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The paper studies the deformation, symmetrical about the plane z = 0, of an infinite trans- 

versely isotropic body containing an internal flat circular slot. The same problem for an 

isotropic medium has been investigated by a different method in [l]. 

1. Suppose that an infinitely thin flat circular slot Z= 0, r< a is located with its 

centre at the origin of co-ordinates in an infinite transversely isotropic apace (see figure). 

Suppose that an external load is applied to the surface of the 

slot. The boundarv conditions are then 

Symmetry at the section z = 0 leads to the further conditions 

u3 Id=0 (r > ah (zrL 4 ir,,),=, = 0 (r > a) (1.2) 

It will be shown later that it is expedient to introduce complex stress components; 

this is associated with the proposed method of solution. 

If we consider that the plane z = 0 divides the space into two half-spaces, we can 

reduce the problem to two boundary-value problems. 

(A). For the half-space z >O 

5, ‘Z -” =:5(r, q~) ir<a), U31z=,=~) (?>a) 

(1.3) 
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(B). For the half-space I < 0 

@,z + %+r Lo = -- ~1 (r, cp) = 
--zl(r, (P) (r< (0 

(1.4) 

(*r, -$2)r=O=-~:(rl cp)= 

Assuming that the boundary functions can be expanded in a Fourier series in 9 and 

allow a Hankel integral transform in r, the boundary-values problems (A) and (B) lead to 

well&nown dual integral equations which have an exact solution. 

The functions of the problem are obtained by the method of total separation of vari- 

ables in the system of equations of the theory of elasticity for a transversely isotropic 

medium. 

2. In [2] th e author has used the proposed method to derive certain general expres- 

sions for the elastic displacements of a transversely isotropic heterogeneous medium. The 

same method was used in [3] to obtain a class of solutions to the static equations of the 

theory of elasticity for a transversely isotropic homogeneous medium. We start from the 

familiar generalized Hooke’s law [4] for a homogeneous transversely isotropic medium 

(2.1) 

Here or are the normal stresses, rS1 are the shear stresses, U, V and W are the com- 

ponents of displacement along the co-ordinate axes and aI1 - aI2 = 2a,,. 

By substituting the values of stresses into the Cauchy system of equilibrium equations, 

we obtain the elasticity equations in displacements 

~~~ a~~ + ~~~~ _t_ n;5 ~~~ + ~ ran aV 
i ( ax + g) + (aI3 +assf g]= 0 

(2.2) 

Using cylindrical coordinates and replacing the displacements 

defined by the formulas 

u = 1 (PU1 + e-%J,), 
2 

v= - $ (t?Ur - e+eUz), 

we obtain a system of equations in fJ1 

with new functions 

w = ua (2.3) 

(2.4) 
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The following simple relation holds between the displacement components along the 

cylindrical coordinate axes and the functions Uf 

Ur = U, - iU,, U, = U, -I- ill,, u, = IV (2.5) 

The formulas which relate the stress componeuts or and rrZfirQL to the function 

uz are 

(2.6) 

We seek a particular solution to (2.4) in the form 

Ur = Jk+r (ar) X1 (2) eikq* UZ=J~_~ (w)& (a) eikv, U~=J~(ar)~~(z) de* (2.7) 

Substitution of (2.7) into (2.4) leads immediately to a system of ordinary differential 

equations 

a11 + aI2 
a%+ 4 - c12x2 -(au + u5fJJq'= 0 

( an+ a12 
a55xp* - ai1 - 4 

J 

w-f- a12 
a%2 + h ~ a*21 + (ala + a5s) wl'=O (2.8) 

aI8 + K66 
a38x8" - a66a% + 2 a (Xl’ - 52’) = 0 

We express the characteristic numbers in the form 

f a&, f 6 3~6 

Here hl are the positive roots of’the equation 

(QrJ2 - Q&J la,&“* - (%a33 + %,o,s - %%’ + allasbl = 0 

h,o = a,, I agj 

(2.9) 

&r=------- 1 I 2a55aii8 
alram + 2araa65 - ad + V(arro88+ 2araa56- a~?)“- 4olroata66 “1 

(2.10) 

For these characteristic numbers the most general solution of (2.4) can be written as 

k--co 0 
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Substituting the values of the U1 into (2.6) yields 

a = z 
z 

eikpJ aJk (ar) ( z 
k=--m o 2=3,5 

TTz + itq, = a65 5 ,i”if { aJk+l (ar) a1 (Cleah1z - C2e-a'L') + 
k=-co o 

+ 2 ht(a~1+u55) le 

d42+ a11 (c aA12 _ C~+,;.h'.)} da 

I=% 5 

(2.12) 

T rz - ‘Tpz = a56 aJk_l (ar) &( CleaASr - C2evaX~r) - 

k=-m 0 

3. From now on we shall assume that the boundary functions can be expanded in a 

Fourier series in 9, and allow a Hanket integral transform in r. With these assumptions we 

can solve the following more general mixed boundary-value problem for a transversely 

isotropic elastic half-space x, >/O with the boundary conditions 

k=--a, 

f-00 

k=-oa 

-km 03 

(TT3 -k iTTZ)z=O=rl(rr v) = 2 efkrp 
s 

dtlko @)Jk+l(ar) da 

k=-m 0 

4-w a, 

(rrz - ir,, ),=, = ~1 (r, cp) = 2 eik‘s 5 dtzkO (a) Jk+ (ar) da 

k=--a, o 

(3.1) 

(3.2) 

To solve this problem we shall use Formnlas(2.11) and (2.12). putting Cl = 0 (I = 1, 

3, 5). Having satisfied the boundary conditions (3.1) and (3.2) we obtain a system of 

equations F determining Cl+ 1, which we write in the expanded form 
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We have from (3.4) that 

By means of (3.7) we eliminate C, from (3.3) and thus obtain the dual integral eqna- 

tibns 

b!(r) = 
1 

m4m6--3m0 I 
md,+q\ a P,;(a) +%"k WI J, @r)da} 

b 

Assuming that fi (r) E 0, we obtain its Hankel transform for r < u: 

Instead of C, (CL) we introduce a new unknown function 

formula 

fk (u) by means of the 

Ce (~4 = r*a (a) + ag (4 

and thus obtain the familiar dual integral equations 

(3*9) 

co co 
/+ c (3.10) 
1 vko (a) J, (ar) da = 0 (r > a), ‘J aJk (ar)lk ia) da = P, (r) (r ,< a) 
0 0 

co 

F, 0") = aag(a)JkW)d~+hP) 
s 
0 

(3.11) 

We quote the exact solution of the dual integral equations from the monograph IS] : 
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(3.12) 

Expressing C, (u) and C, (a) in t&ma of jk’(d) and g (a) we obtain a solution to 

the problems in general form. 

Returning to the problems (A) and (R), we easily see that they represent a particular 

case of the more general boundary-value problem soIved in section 3. When solving the 

problem (A) we assume C - 0 (1= 1, 3, 5) in formulas (2.11) and (2.12), while when solv- 
ing the problem 03) W e ha\eC l+ 1 = 0. Since in problems (A) and (B) Cl, \r=o = 0, the cal- 

culations are somewhat simplified. 
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