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The paper studies the deformation, symmetrical about the plane z = 0, of an infinite trans-
versely isotropic body containing an internal flat circular slot. The same problem for an
isotropic medium has been investigated by a different method in [1].

1. Suppose that an infinitely thin flat circular slot 2=0, r< a is located with its
centre at the origin of co-ordinates in an infinite transversely isotropic space (see figure).
Suppose that an external load is applied to the surface of the

ZI' - slot. The boundary conditions are then
b 077 (1.1
i 7 3, l:'::}():sl lz:_():’)(rv ¢) (r<a)
j Z= -04//,7/(/, r .
Va7 (Tr; - To ) =0 T (rrz -+ Ta. )zf——O =T (r, §)(r <a)
(Tr: - ircp: ); 407 T (Tr; - ir:;‘: ):: g =Tz (r, q) (r<a)
Symmetry at the section z =0 leads to the further conditions
Ua fz:():O (r>a), (Tr;:t irq,; )z:():O (r>a) (1-2)

It will be shown later that it is expedient to introduce complex stress components;
this is associated with the proposed method of solution.

If we consider that the plane z = 0 divides the space into two half-spaces, we can
reduce the problem to two boundary-value problems.
(A). For the half-space z >0

jl‘z 701T5(r, q”) (T<(Z), U3,;:0=() (">a)
. o noo(r>a
(T Ty )y =T0(r, @)= {Tl r, §) (r<a)
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(Tpe— iTy.), =T (1 q):\r_»(r, Q) (r<a) (1.3)
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{B). For the half-space 20
6, lhmp=0(r, @) (r<4a) Usl,eo=0 (r>a)

(r>a)
(r<u) (1.4)
. _ 0 (r > a)
(Tpy — iTq: ) gemo = —T:(r, @)= {_ nir 9) (r<a)
Assuming that the boundary functions can be expanded in a Fourier series in ® and

allow a Hankel integral transfom in r, the boundary-values problems (A) and (B) lead to
welleknown dual integral equations which have an exact solution.

0
(T T4, ), g ="—T1 (ry @)= {__ T (r, @)

The functions of the problem are obtained by the method of total separation of vari-

ables in the system of equations of the theory of elasticity for a transversely isotropic
medinm,

2. In [2] the author has used the proposed method to derive certain general expres-
sions for the elastic displacements of a transversely isotropic heterogeneous medium. The
same method was used in [3] to obtain a class of solutions to the static equations of the
theory of elasticity for a transversely isotropic homogeneous medium, We start from the
familiar generalized Hooke’s law [4] for a homogeneous transversely isotropic medium

ol v oW ow , eUu
5, =0y, 33&—}—(113'5;—!—013“‘3‘;, T{&=a5<g+j§;’>
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S, =a,, <£Tg:+ 39/—#033'3?, Txu=a66(7y+-8;)

Here O are the normal stresses, Tsa are the shear stresses, U, V and W are the com-
ponents of displacement along the co-ordinate axes and a;,; — a,, = 2ay,.

By substituting the values of stresses into the Cauchy system of equilibrium equations,
we obtain the elasticity equations in displacements

it aU\ ;U 0 [au+au v
a66<3$2+ gyt T s gad + % 6xL Tz (55—!— )+ (13 + ass) az]
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aSS(axz + aJ.}—f‘a:m azﬁ +(‘113+0a5) FTl ( + ay>z()
Using cylindrical coordinates and replacing the displacements with new functions
defined by the formulas

Qg

U=- (ei*’U1 4?0y, Voo — —;— (U, — e7°0y), W=U, (2.3)

we obtain a system of equations in U,

8 19 1 8 2t 0 U, i d\fay-t+a
“(‘3"'3 ettty T r)Ul+“55 o (ar+7“5?§>{ii‘_nx
i 0 1 a i 8 1 8.

F g T U (5} Frgg 77 ) Uz} + (@ms+ ass)”""a;} =0
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The following simple relation holds between the displacement components along the
cylindrical coordinate axes and the functions U,

U,=U,— iU, Up=U,+ il Us=W (2.5)

The formulas which relate the stress components 0, and 7,.4{7,, to the function

Uy are
(2.6)

aUa a3 2 i a 1 a i a 1
w=a g + 55— T e )0 7 ey ) U

. ol Us i oU, . rols oUs i 0Uyg
T"+lr°l=a55[6z + (—6—; T%”' rrz”‘rwz:assl__ijz—-i—(w_?_a‘a)]
We seek a particular solution to (2.4} in the form

U= J,,, (ar) X1 (2) ¥ Us=Jy_ (@) Xa(2) €, Ug=1J, (ar) X3(z) °  (2.7)

Substitution of {2.7} into (2.4} leads immediately to a system of ordinary differential

equations

assry” — (au — ‘a"l‘l;ziz) zy p — o + = a*zs — (a3 + ass) axs’ =0
a a
agsry” (au —%m) 2y T + 22 gy + (@13 -+ ass) azs’ =0 (2.8)
ais + ags

aaal's" -— aﬁsa"zs + "_2’“‘“ o (xl' —_— a:g’) =0

We express the characteristic numbers in the form
4+ aky, 4 ahg 4 ady
t
Here A ) are the positive roots of the equation
(assh? — gq) [a330550* — (annass -+ 2835055 — o)A + apag]l =0 (2.9

A= ag [ as;

Ae? = 5 {anas + 2a10055 — a15* + V (@11006>+ 2018055— 015°) — 4011003055°}

285605 (2.10)
1

As? = Tasedes {a11ass + 2819055 — 6127 — V (@11086*+ 2a13855— a16%)°— 4ay1ag9855t}

For these characteristic numbers the most general solution of (2.4) can be written as
Feo . s aklz ~ah,z d
Uy = 2 P S Jisp (07) 2 (Ce +Cpie yda
k=—00 0 1==1, 3, 5
oo akz -ahz
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E=—oo =3, &
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Uy= +§ ¢ 7 (ar gsshi—ay -ang
3= e k(a ) Z M (813 -+ ags) (Cle —ClHe )da
J==—00 0 1=3, 5

Substituting the values of the U; into (2.6) yields

— +‘?$ ikq,m ; g3 {assA® — an) celic arz c —akz i
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[ S 1]
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+ 2 }“l (als + a55) (Cl - Cl+1e ) dot (2.12)
=3, 5
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k==—00 1]
11133\11 -+ an ~akz }
] 2 A; {a1s + a;s) (Cl - Cl+le ) da

3. From now on we shall assume that the boundary functions can be expanded in a
Fourier series in ¢ and allow a Hankel integral transform in r. With these assumptions we
can solve the following more general mixed boundary~value problem for a transversely
isotropic elastic half-space x; > 0 with the boundary conditions

400
Usheo=U (@)= X Uy(Ne™ (>0
=0 (3.1)
4o
S limo=0(r A= D) (N  (r<a)
k——oo
[ ]
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+°° % (3.2)
(Tpz = Ty pmo = T2 () @)= ke S dty,° (@) Ty (0r) da
k-—-oo [}

To solve this problem we shall use Formulas{2.11) and (2.12), putting C;=0(=1,
3, 5). Having satisfied the boundary conditions (3.1) and (3.2) we obtain a system of
equations for determining C;  ,, which we write in the expanded form

: Ag? asshs? —a
§ T, (ar){ “(am T ass) Ce+ A:(aw = al.;) Cs} do=—U,(r) (r>a)

o . .
S aJ, (ar) {[W + am] Ce+ [M_@ + am] Cs} da =G, () (3.3
b
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f dysha® - an azhs® + an } e
455 L}QC:—‘ A’s (&13+ 055) 4~ ?\15 (6113+ 355) C6 ——12;5 (a)

For brevity we introduce the notations

agsha® — an asshi® — ay

M Ry (s - dss) 2= s (axs 4 as5)
py Gmllsh ) g aw Gkt —an) |, (3.5)
# {«13 -1 as3) (a3 + ass)
e (a1yds? -~ ay) @55 _ {a19hs® + an) ass
T Ma(as R azsy e =T {a1s + as)
We have from (3.4) that
T (@) =T (@) (3.6)
= 2Cs
o o T (@) T (@)
CE T T 8T 2ms 3.7

By means of (3.7) we eliminate C, from (3.3} and thus obtain the dual integral equa-

tions
(3.8)
ot (ar)Cela)da=fa(r) (r<a)

oy 8

S T @) Ce(@)da=fi(r) (r>a),
0

1 Co . .
{mssz (ry — ﬁ"—X [Th @)+ Tap (9] 7 (ou')da}
1]

L = e
fl { ) niyMme — Ry

1 3 . °
fo(r) == m{mck + —n%s- '\ [Tk (@) - Ty ()] T, (2r) da}
0

Assuming that f; (r) = 0, we obtain its Hankel transform for r <a:

(o]
ag (@) = S f1(r) T (ar) dr

Instead of C, (a) we introeduce a new unknown function fk () by means of the

formula
Cs (o) = f* @) +og (o] (3.9)
and thus obtain the familiar dual integral equations
X e (3.10)
Sfjk" (o) Jy (ar)da = (r>a), Sa.fk {ar)fy W da=F, (r) (r Za)
o - o
Fi(r) = o5 @) Ty (@r) do+ fa () 51D

]

We quote the exact solation of the dual integral equations from the monograph {5]:
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. (ER) AR+ o (3.12)

V_ a
a)= St 1y (2 )dt\
fi (@)= 1‘(1/ K41/ p Va--——k-
Expressing C, (a) and C4 (@) in terms of fk°(a) and g (@) we obtain a solution to
the problems in general form.

Returning to the problems (A) and (B), we easily see that they represent a particular
case of the more general boundary-value problem solved in section 3. When solving the
problem {A) we assume C;=0{=1,3,5) in formulas (2.11} and (2.12), while when solv-
ing the problem (B) we have €y, {=0. Since in problems (A) and (B} U, 1z=o =0, the cal-
culations are somewhat simplified.
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